Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38597953

RESUMO

Environmental airborne antigens are central to the development of allergic asthma, but the cellular processes that trigger disease remain incompletely understood. In this report, Schmitt et al. (https://doi.org/10.1084/jem.20231236) identify TNF-like protein 1A (TL1A) as an epithelial alarmin constitutively expressed by a subset of lung epithelial cells, which is released in response to airborne microbial challenge and synergizes with IL-33 to drive allergic disease.


Assuntos
Asma , Hipersensibilidade , Humanos , Alarminas , Células Epiteliais , Pulmão
2.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38597952

RESUMO

Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.


Assuntos
Asma , Interleucina-33 , Humanos , Animais , Camundongos , Alarminas , Imunidade Inata , Interleucina-9 , Proteômica , Linfócitos , Citocinas , Inflamação
3.
Immunity ; 57(4): 752-771, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599169

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.


Assuntos
Inflamação , Ácidos Nucleicos , Humanos , Imunidade Inata , Receptores Imunológicos , Alarminas
4.
Elife ; 132024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602733

RESUMO

Chemotherapy is a widely used treatment for a variety of solid and hematological malignancies. Despite its success in improving the survival rate of cancer patients, chemotherapy causes significant toxicity to multiple organs, including the skeleton, but the underlying mechanisms have yet to be elucidated. Using tumor-free mouse models, which are commonly used to assess direct off-target effects of anti-neoplastic therapies, we found that doxorubicin caused massive bone loss in wild-type mice, a phenotype associated with increased number of osteoclasts, leukopenia, elevated serum levels of danger-associated molecular patterns (DAMPs; e.g. cell-free DNA and ATP) and cytokines (e.g. IL-1ß and IL-18). Accordingly, doxorubicin activated the absent in melanoma (AIM2) and NLR family pyrin domain containing 3 (NLRP3) inflammasomes in macrophages and neutrophils, causing inflammatory cell death pyroptosis and NETosis, which correlated with its leukopenic effects. Moreover, the effects of this chemotherapeutic agent on cytokine secretion, cell demise, and bone loss were attenuated to various extent in conditions of AIM2 and/or NLRP3 insufficiency. Thus, we found that inflammasomes are key players in bone loss caused by doxorubicin, a finding that may inspire the development of a tailored adjuvant therapy that preserves the quality of this tissue in patients treated with this class of drugs.


Assuntos
Inflamassomos , Melanoma , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Alarminas , Doxorrubicina/efeitos adversos , Inflamação
5.
Breast Cancer Res ; 26(1): 42, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468349

RESUMO

BACKGROUND: Breast cancer is the second most common cause of death from cancer in women worldwide. Counterintuitively, large population-based retrospective trials report better survival after breast-conserving surgery (BCS) compared to mastectomy, corrected for tumour- and patient variables. More extensive surgical tissue injury and activation of the sympathetic nervous system by nociceptive stimuli are associated with immune suppression. We hypothesized that mastectomy causes a higher expression of plasma damage associated molecular patterns (DAMPs) and more intraoperative sympathetic activation which induce postoperative immune dysregulation. Immune suppression can lead to postoperative complications and affect tumour-free survival. METHODS: In this prospective observational study, plasma DAMPs (HMGB1, HSP70, S100A8/A9 and S100A12), intraoperative sympathetic activation (Nociception Level (NOL) index from 0 to 100), and postoperative immune function (plasma cytokine concentrations and ex vivo cytokine production capacity) were compared in patients undergoing elective BCS (n = 20) versus mastectomy (n = 20). RESULTS: Ex vivo cytokine production capacity of TNF, IL-6 and IL-1ß was nearly absent in both groups one hour after surgery. Levels appeared recovered on postoperative day 3 (POD3), with significantly higher ex vivo production capacity of IL-1ß after BCS (p = .041) compared to mastectomy. Plasma concentration of IL-6 was higher one hour after mastectomy (p = .045). Concentrations of plasma alarmins S100A8/A9 and S100A12 were significantly higher on POD3 after mastectomy (p = .003 and p = .041, respectively). Regression analysis showed a significantly lower percentage of NOL measurements ≤ 8 (absence of nociception) during mastectomy when corrected for norepinephrine equivalents (36% versus 45% respectively, p = .038). Percentage of NOL measurements ≤ 8 of all patients correlated with ex vivo cytokine production capacity of IL-1ß and TNF on POD3 (r = .408; p = .011 and r = .500; p = .001, respectively). CONCLUSIONS: This pilot study revealed substantial early postoperative immune suppression after BCS and mastectomy that appears to recover in the following days. Differences between BCS and mastectomy in release of DAMPs and intraoperative sympathetic activation could affect postoperative immune homeostasis and thereby contribute to the better survival reported after BCS in previous large population-based retrospective trials. These results endorse further exploration of (1) S100 alarmins as potential therapeutic targets in breast cancer surgery and (2) suppression of intraoperative sympathetic activation to substantiate the observed association with postoperative immune dysregulation.


Assuntos
Neoplasias da Mama , Mastectomia , Humanos , Feminino , Mastectomia/efeitos adversos , Mastectomia Segmentar/efeitos adversos , Neoplasias da Mama/cirurgia , Estudos Retrospectivos , Alarminas , Projetos Piloto , Interleucina-6 , Proteína S100A12 , Terapia de Imunossupressão
6.
Nihon Yakurigaku Zasshi ; 159(2): 101-106, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432917

RESUMO

Sepsis is defined as the body's overwhelming and life-threatening response to infection that can lead to tissue damage, organ failure, and death. Since bacterial infection is one of the main causes of sepsis, appropriate antimicrobial therapy remains the cornerstone of sepsis and septic shock management. However, since sepsis is a multifaceted chaos involving inflammation and anti-inflammation disbalance leading to the unregulated widespread release of inflammatory mediators, cytokines, and pathogen-related molecules leading to system-wide organ dysfunction, the whole body control to prevent the progression of organ dysfunction is needed. In sepsis and septic shock, pathogen-associated molecular patterns (PAMPs), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host. PAMPs are recognized by pattern recognizing receptors (PRRs) expressed on immune-reactive cells. PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Thus, most PRRs respond to PAMPs or DAMPs by triggering activation of transcriptional factors, NF-κB, AP1, and STAT-3. On the other hand, sepsis leads to immune (lymphocytes and macrophages) and nonimmune (endothelial and epithelial cells) cell death. Apoptosis has been the major focus of research on cell death in sepsis, but autophagy, necrosis, necroptosis, pyroptosis, NETosis, and ferroptosis may also play an important role in this critical situation. The recent development in our understanding regarding the cellular pathogenesis of sepsis will help in developing new treatment of sepsis.


Assuntos
Sepse , Choque Séptico , Humanos , Insuficiência de Múltiplos Órgãos/etiologia , Moléculas com Motivos Associados a Patógenos , Apoptose , Alarminas
7.
EMBO J ; 43(7): 1164-1186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396301

RESUMO

Ferroptosis is a regulated form of necrotic cell death caused by iron-dependent accumulation of oxidized phospholipids in cellular membranes, culminating in plasma membrane rupture (PMR) and cell lysis. PMR is also a hallmark of other types of programmed necrosis, such as pyroptosis and necroptosis, where it is initiated by dedicated pore-forming cell death-executing factors. However, whether ferroptosis-associated PMR is also actively executed by proteins or driven by osmotic pressure remains unknown. Here, we investigate a potential ferroptosis role of ninjurin-1 (NINJ1), a recently identified executor of pyroptosis-associated PMR. We report that NINJ1 oligomerizes during ferroptosis, and that Ninj1-deficiency protects macrophages and fibroblasts from ferroptosis-associated PMR. Mechanistically, we find that NINJ1 is dispensable for the initial steps of ferroptosis, such as lipid peroxidation, channel-mediated calcium influx, and cell swelling. In contrast, NINJ1 is required for early loss of plasma membrane integrity, which precedes complete PMR. Furthermore, NINJ1 mediates the release of cytosolic proteins and danger-associated molecular pattern (DAMP) molecules from ferroptotic cells, suggesting that targeting NINJ1 could be a therapeutic option to reduce ferroptosis-associated inflammation.


Assuntos
Alarminas , Ferroptose , Humanos , Necrose/metabolismo , Morte Celular , Membrana Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo
8.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396704

RESUMO

This study delves into the critical role of alarmins in chronic spontaneous urticaria (CSU), focusing on their impact on disease severity and the quality of life (QoL) of patients. We investigated the alterations in alarmin levels in CSU patients and their correlations with the Urticaria Activity Score (UAS7) and the Dermatology Life Quality Index (DLQI). We analyzed serum levels of interleukin-25 (IL-25), interleukin-33 (IL-33), and thymic stromal lymphopoietin (TSLP) in 50 CSU patients, comparing these to 38 healthy controls. The study examined the relationship between alarmin levels and clinical outcomes, including disease severity and QoL. Elevated levels of IL-33 and TSLP in CSU patients (p < 0.0001) highlight their potential role in CSU pathogenesis. Although IL-25 showed higher levels in CSU patients, this did not reach statistical significance (p = 0.0823). Crucially, IL-33's correlation with both UAS7 and DLQI scores underscores its potential as a biomarker for CSU diagnosis and severity assessment. Of the alarmins analyzed, IL-33 emerges as particularly significant for further exploration as a diagnostic and prognostic biomarker in CSU. Its substantial correlation with disease severity and impact on QoL makes it a compelling candidate for future research, potentially serving as a target for therapeutic interventions. Given these findings, IL-33 deserves additional investigation to confirm its role and effectiveness as a biomarker and therapeutic target in CSU.


Assuntos
Urticária Crônica , Urticária , Humanos , Alarminas , Biomarcadores , Doença Crônica , Urticária Crônica/sangue , Urticária Crônica/diagnóstico , Citocinas/uso terapêutico , Interleucina-17/sangue , Interleucina-17/química , Interleucina-33/sangue , Interleucina-33/química , Qualidade de Vida , Linfopoietina do Estroma do Timo/sangue , Linfopoietina do Estroma do Timo/química , Urticária/sangue , Urticária/diagnóstico
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367901

RESUMO

Type 2 inflammation in asthma develops with exposure to stimuli to include inhaled allergens from house dust mites (HDM). Features include mucus hypersecretion and the formation of pro-secretory ion transport characterised by elevated basal Cl- current. Studies using human sinonasal epithelial cells treated with HDM extract report a higher protease activated receptor-2 (PAR-2) agonist-induced calcium mobilisation that may be related to airway sensitisation by allergen-associated proteases. Herein, this study aimed to investigate the effect of HDM on Ca2+ signalling and inflammatory responses in asthmatic airway epithelial cells. Primary bronchial epithelial cells (hPBECs) from asthma donors cultured at air-liquid interface were used to assess electrophysiological, Ca2+ signalling and inflammatory responses. Differences were observed regarding Ca2+ signalling in response to PAR-2 agonist 2-Furoyl-LIGRLO-amide (2-FLI), and equivalent short-circuit current (Ieq) in response to trypsin and 2-FLI, in ALI-asthma and healthy hPBECs. HDM treatment led to increased levels of intracellular cations (Ca2+, Na+) and significantly reduced the 2-FLI-induced change of Ieq in asthma cells. Apical HDM-induced Ca2+ mobilisation was found to mainly involve the activation of PAR-2 and PAR-4-associated store-operated Ca2+ influx and TRPV1. In contrast, PAR-2, PAR-4 antagonists and TRPV1 antagonist only showed slight impact on basolateral HDM-induced Ca2+ mobilisation. HDM trypsin-like serine proteases were the main components leading to non-amiloride sensitive Ieq and also increased interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) from asthma hPBECs. These studies add further insight into the complex mechanisms associated with HDM-induced alterations in cell signalling and their relevance to pathological changes within asthma.


Assuntos
Alarminas , Asma , Humanos , Animais , Tripsina , Células Epiteliais , Alérgenos/farmacologia , Pyroglyphidae
10.
Biomolecules ; 14(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254708

RESUMO

Immunogenic death (ICD) stimulates adaptive immunity and affects immunotherapeutic efficacy, an important part of which is damage-associated molecular patterns (DAMPs). However, the function of these DAMPs for lung adenocarcinoma (LUAD) remains obscure. We initially found differentially expressed genes (DEGs) with prognostic significance related to DAMPs with the TCGA database and then used the least absolute shrinkage and selection operator (LASSO) regression to create a risk signature strongly correlated with overall survival (OS) with eight DEGs. Validation was performed externally using the external data set GSE68465. Lower-risk LUAD patients were found to be more chemotherapy-resistant and enriched for more immune-related pathways than those with higher risk scores, and patients with different risks showed different levels of immune cell infiltration. PANX1, a crucial gene closely associated with lung adenocarcinoma, was identified using the weighted correlation network analysis (WGCNA), and experiments revealed that PANX1 promotes the proliferation as well as invasion of LUAD cells. Furthermore, PANX1 was found to be positively correlated with CD274, CD276, and M2 macrophage markers. We developed and validated an entirely new gene signature related to DAMPs that may be useful for LUAD patient prognosis, immune microenvironment, and chemotherapeutic drug sensitivity prediction. The results may also guide clinical immunotherapy and chemotherapy approaches for LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Genes Reguladores , Adenocarcinoma de Pulmão/genética , Fatores de Transcrição , Imunidade Adaptativa , Alarminas , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética , Antígenos B7 , Proteínas do Tecido Nervoso , Conexinas
11.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255845

RESUMO

Psoriasis is a chronic skin disorder that involves both innate and adaptive immune responses in its pathogenesis. Local tissue damage is a hallmark feature of psoriasis and other autoimmune diseases. In psoriasis, damage-associated molecular patterns (DAMPs) released by damaged local tissue act as danger signals and trigger inflammatory responses by recruiting and activating immune cells. They also stimulate the release of pro-inflammatory cytokines and chemokines, which exacerbate the inflammatory response and contribute to disease progression. Recent studies have highlighted the role of DAMPs as key regulators of immune responses involved in the initiation and maintenance of psoriatic inflammation. This review summarizes the current understanding of the immune mechanism of psoriasis, focusing on several important DAMPs and their mechanisms of action. We also discussed the potential of DAMPs as diagnostic and therapeutic targets for psoriasis, offering new insights into the development of more effective treatments for this challenging skin disease.


Assuntos
Doenças Autoimunes , Psoríase , Humanos , Psoríase/tratamento farmacológico , Alarminas , Cognição , Citocinas
12.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256033

RESUMO

Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.


Assuntos
Moléculas com Motivos Associados a Patógenos , Sepse , Humanos , Alarminas , Imunidade Inata , PubMed
13.
Nat Immunol ; 25(2): 256-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172258

RESUMO

The pleiotropic alarmin interleukin-33 (IL-33) drives type 1, type 2 and regulatory T-cell responses via its receptor ST2. Subset-specific differences in ST2 expression intensity and dynamics suggest that transcriptional regulation is key in orchestrating the context-dependent activity of IL-33-ST2 signaling in T-cell immunity. Here, we identify a previously unrecognized alternative promoter in mice and humans that is located far upstream of the curated ST2-coding gene and drives ST2 expression in type 1 immunity. Mice lacking this promoter exhibit a selective loss of ST2 expression in type 1- but not type 2-biased T cells, resulting in impaired expansion of cytotoxic T cells (CTLs) and T-helper 1 cells upon viral infection. T-cell-intrinsic IL-33 signaling via type 1 promoter-driven ST2 is critical to generate a clonally diverse population of antiviral short-lived effector CTLs. Thus, lineage-specific alternative promoter usage directs alarmin responsiveness in T-cell subsets and offers opportunities for immune cell-specific targeting of the IL-33-ST2 axis in infections and inflammatory diseases.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Humanos , Animais , Camundongos , Interleucina-33/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Alarminas , Subpopulações de Linfócitos T/metabolismo , Antivirais
14.
Cells ; 13(2)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247880

RESUMO

HMGB1 is a prototypical danger-associated molecular pattern (DAMP) molecule that co-localizes with amyloid beta (Aß) in the brains of patients with Alzheimer's disease. HMGB1 levels are significantly higher in the cerebrospinal fluid of patients. However, the cellular and subcellular distribution of HMGB1 in relation to the pathology of Alzheimer's disease has not yet been studied in detail. Here, we investigated whether HMGB1 protein levels in brain tissue homogenates (frontal cortex and striatum) and sera from Tg-APP/PS1 mice, along with its cellular and subcellular localization in those regions, differed. Total HMGB1 levels were increased in the frontal cortices of aged wildtype (7.5 M) mice compared to young (3.5 M) mice, whereas total HMGB1 levels in the frontal cortices of Tg-APP/PS1 mice (7.5 M) were significantly lower than those in age-matched wildtype mice. In contrast, total serum HMGB1 levels were enhanced in aged wildtype (7.5 M) mice and Tg-APP/PS1 mice (7.5 M). Further analysis indicated that nuclear HMGB1 levels in the frontal cortices of Tg-APP/PS1 mice were significantly reduced compared to those in age-matched wildtype controls, and cytosolic HMGB1 levels were also significantly decreased. Triple-fluorescence immunohistochemical analysis indicated that HMGB1 appeared as a ring shape in the cytoplasm of most neurons and microglia in the frontal cortices of 9.5 M Tg-APP/PS1 mice, indicating that nuclear HMGB1 is reduced by aging and in Tg-APP/PS1 mice. Consistent with these observations, Aß treatment of both primary cortical neuron and primary microglial cultures increased HMGB1 secretion in the media, in an Aß-dose-dependent manner. Our results indicate that nuclear HMGB1 might be translocated from the nucleus to the cytoplasm in both neurons and microglia in the brains of Tg-APP/PS1 mice, and that it may subsequently be secreted extracellularly.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteína HMGB1 , Idoso , Animais , Humanos , Camundongos , Alarminas , Encéfalo , Microglia , Neurônios , Modelos Animais de Doenças
15.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247852

RESUMO

P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.


Assuntos
Sistema Nervoso Central , Microglia , Ratos , Camundongos , Humanos , Animais , Trifosfato de Adenosina , Alarminas , Receptores Purinérgicos P2X7
16.
Am J Reprod Immunol ; 91(1): e13812, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282610

RESUMO

PROBLEM: In women of reproductive age, endometriosis may contribute to dysmenorrhea, chronic pelvic pain, dyspareunia, infertility, adenomyosis, and endometrial ovarian cyst (EOC). Recent studies have shown that chronic inflammation occurs in the pelvis of endometriosis patients and that this inflammation is exacerbated by immunosuppression, leading to survival endometrial debris. However, the detailed immunological mechanisms underlying the aggravation of inflammation and immunosuppression in endometriosis patients remain unclear. METHOD OF STUDY: We investigate the alarmins (high-mobility group box-1, IL-33, IL-1α, and S100B protein), proinflammatory cytokines (IL-6 and IL-1ß), and immune cells (CD8+ T cells, CD4+ T cells, natural killer cells, natural killer T cells, dendritic cells, and macrophages) in peritoneal fluid of patients with EOC using enzyme-linked immunosorbent assay, electrochemiluminescence, and flow cytometry. Then, we analyzed the correlation between these factors and the aggravating indicators of endometriosis, tumor size and revised American Society for Reproductive Medicine (r-ASRM) score. RESULTS: Unexpectedly, there was no correlation between each alarmin level and aggravating indicators. However, the expression of pattern recognition receptors, toll-like receptor 4, and receptor of advanced glycation end-products on macrophages was inversely correlated with aggravating indicators. CONCLUSIONS: The aggravation of endometriosis is associated with a decrease in alarmin receptors but not alarmin levels. Investigation of innate immune systems, such as alarmins and their receptors, may help elucidate new mechanisms of endometriosis.


Assuntos
Endometriose , Humanos , Feminino , Alarminas , Linfócitos T CD8-Positivos/metabolismo , Regulação para Baixo , Macrófagos , Receptores de Reconhecimento de Padrão/metabolismo , Inflamação
17.
Sci Immunol ; 9(91): eabq6930, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215193

RESUMO

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.


Assuntos
Imunidade Inata , Interleucina-33 , Camundongos , Animais , Linfócitos , 60419 , Alarminas , Modelos Animais de Doenças , Fibroblastos , Dexametasona/farmacologia
18.
Rheumatology (Oxford) ; 63(3): 817-825, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314987

RESUMO

OBJECTIVES: Our previous studies have demonstrated that the Damage Associated Molecular Pattern (DAMP) protein, S100A4, is overexpressed in the involved skin and peripheral blood of patients with SSc. It is associated with skin and lung involvement, and disease activity. By contrast, lack of S100A4 prevented the development of experimental dermal fibrosis. Herein we aimed to evaluate the effect of murine anti-S100A4 mAb 6B12 in the treatment of preestablished experimental dermal fibrosis. METHODS: The effects of 6B12 were assessed at therapeutic dosages in a modified bleomycin-induced dermal fibrosis mouse model by evaluating fibrotic (dermal thickness, proliferation of myofibroblasts, hydroxyproline content, phosphorylated Smad3-positive cell count) and inflammatory (leukocytes infiltrating the lesional skin, systemic levels of selected cytokines and chemokines) outcomes, and transcriptional profiling (RNA sequencing). RESULTS: Treatment with 7.5 mg/kg 6B12 attenuated and might even reduce pre-existing dermal fibrosis induced by bleomycin as evidenced by reduction in dermal thickness, myofibroblast count and collagen content. These antifibrotic effects were mediated by the downregulation of TGF-ß/Smad signalling and partially by reducing the number of leukocytes infiltrating the lesional skin and decrease in the systemic levels of IL-1α, eotaxin, CCL2 and CCL5. Moreover, transcriptional profiling demonstrated that 7.5 mg/kg 6B12 also modulated several profibrotic and proinflammatory processes relevant to the pathogenesis of SSc. CONCLUSION: Targeting S100A4 by the 6B12 mAb demonstrated potent antifibrotic and anti-inflammatory effects on bleomycin-induced dermal fibrosis and provided further evidence for the vital role of S100A4 in the pathophysiology of SSc.


Assuntos
Alarminas , Pele , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Bleomicina/toxicidade , Modelos Animais de Doenças , Proteína A4 de Ligação a Cálcio da Família S100/genética , Pele/patologia , Fibrose
19.
Microbes Infect ; 26(1-2): 105237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37805122

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients with keratitis produces substantial amounts of phenol-soluble modulin α (PSMα). However, the role of PSMα in S. aureus keratitis remains unclear. We observed that PSMα-producing and PSMα-deficient strains could infect the cornea in our experimental mouse keratitis model; however, only the PSMα-producing strain delayed epithelial wound healing and induced stromal inflammation. PSMα induced damage to the epithelium, the release of alarmins IL-1α and IL-36α, and the expression of inflammatory chemokines by resident corneal cells in the mouse corneal organ culture. The IL-36 (but not IL-1) receptor antagonist attenuated mouse keratitis induced by PSMα-containing bacterial culture supernatants, as well as by infection with PSMα-producing S. aureus, suggesting that the corneal inflammations were dependent on IL-36. Recombinant PSMα elicited IL-36-dependent corneal inflammation in mice. Thus, PSMα and the subsequently released IL-36 are critical factors triggering inflammation during S. aureus keratitis.


Assuntos
Toxinas Bacterianas , Ceratite , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Alarminas , Infecções Estafilocócicas/microbiologia , Ceratite/microbiologia , Inflamação
20.
Rheumatology (Oxford) ; 63(3): 608-618, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788083

RESUMO

Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.


Assuntos
Osteoartrite , Receptor 4 Toll-Like , Humanos , Inflamação , Transdução de Sinais , Alarminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...